If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X+34=86
We move all terms to the left:
X^2+4X+34-(86)=0
We add all the numbers together, and all the variables
X^2+4X-52=0
a = 1; b = 4; c = -52;
Δ = b2-4ac
Δ = 42-4·1·(-52)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{14}}{2*1}=\frac{-4-4\sqrt{14}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{14}}{2*1}=\frac{-4+4\sqrt{14}}{2} $
| |2x+9|=18 | | 40-2u+3u=19 | | x^2+6x=16x-16 | | 0.5(2+2x)+0.25(6x-1)=1 | | 2x+13=9x-36 | | 5m+2=2m+3 | | 5x-6=-3+6 | | -4(z-12)=4z | | D^2-4D+4)y=0 | | 4x-14=9x+11 | | (5+x)/8=5 | | 7x=10-36 | | 7x=36-10 | | 9x-6=24= | | x-10=12= | | x⁴-6x²+12=7 | | −27−r=6421 | | x/5=8/20,x= | | 8x-1=-11 | | h−104= | | -2/7-r=64/21 | | -94=8+3(1+5y) | | -7(2n-8)=112 | | -3p+4-5p=-20 | | n-3n=2 | | -8R-4.04+2.78=-14.6r-14.46 | | 0.25*n=7-(n/2) | | 3+2(r−2)=7. | | -6d-17=9-4d+12 | | 9-(2-3)x=6+2x-(5+x) | | -2(0)+n=-3 | | -16+17j=17j+4j+12 |